References

Brese, N. E. \& O’Keeffe, M. (1991). Acta Crust. B47, 192-197.
Dowty, E. (1995). ATOMS for Window's. Version 3.1. Shape Software, 521 Hidden Valley Road, Kingsport. TN 37663, USA.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Hall, S. R., Flack, H. D. \& Stewart, J. M. (1992). Editors. Xtal3. 2 Reference Manual. Universities of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
Leclaire, A., Chardon, J., Grandin, A., Borel, M.-M. \& Raveau, B. (1993). Eur. J. Solid State Inorg. Chem. 30, 461-469.

Lii, K. H., Chueh, B. R., Kang, H. Y. \& Wang, S. I. (1992). J. Solid State Chem. 99. 72-77.

Acta Cryst. (1999). C55, 291-293

$\mathbf{C a}_{2}\left(\mathrm{H}_{3} \mathrm{O}\right)_{\mathbf{2}}\left[\mathrm{V}_{10} \mathrm{O}_{\mathbf{2 8}}\right] \cdot \mathbf{1 6} \mathrm{H}_{\mathbf{2}} \mathrm{O}$

Neven Strukan, Marina Cindrić and Boris Kamenar
Laboratory of General and Inorganic Chemistry, Faculty of Science, University of Zagreb, Ul. kralja Zvonimira 8, PO Box 153, 10000 Zagreb, Croatia. E-mail: neven. strukan@public.srce.hr

(Received 3 June 1998; accepted 15 October 1998)

Abstract

The crystal structure of dicalcium bis(oxonium) decavanadate hexadecahydrate has been determined by X-ray analysis. The main feature of the structure is the [$\left.\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ anion, built up from ten distorted edgesharing VO_{6} octahedra with well established structures. Each Ca^{2+} ion is surrounded by seven water molecules in the form of a distorted pentagonal bipyramid. Water H atoms, as well as those of the $\mathrm{H}_{3} \mathrm{O}^{+}$ions, participate in a complicated three-dimensional hydrogen-bonding system.

Comment

The $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ decavanadate anion is one of the most investigated polyoxoanions of vanadium. The first identified salt, i.e. that of barium, $\mathrm{Ba}_{3}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right]$-$19 \mathrm{H}_{2} \mathrm{O}$ (Norblad, 1875), was followed by others with alkaline, earth-alkaline and ammonium cations, for example, $\mathrm{Na}_{6}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 18 \mathrm{H}_{2} \mathrm{O}$ (Durif et al., 1980), $\mathrm{Ca}_{3}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 17 \mathrm{H}_{2} \mathrm{O}$ (Swallow et al., 1966), $\mathrm{Sr}_{3}-$ $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right] \cdot 22 \mathrm{H}_{2} \mathrm{O}$ (Nieto et al., 1993) and $\mathrm{Ba}_{3}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right]$-$19 \mathrm{H}_{2} \mathrm{O}$ (Kamenar et al., 1996), and by double salts such as $\mathrm{K}_{2} \mathrm{Zn}_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 16 \mathrm{H}_{2} \mathrm{O}$ (Evans, 1966), $\mathrm{K}_{2} \mathrm{Mg}_{2}-$ $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right] \cdot 16 \mathrm{H}_{2} \mathrm{O}, \mathrm{Rb}_{2} \mathrm{Mg}_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 16 \mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{NH}_{4}\right)_{2}-$ $\mathrm{Mg}_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 16 \mathrm{H}_{2} \mathrm{O}$ (Avtamonova et al., 1990). It is interesting to note that the decavanadates are the
only polyoxometallates found as minerals, e.g. $\mathrm{K}_{2} \mathrm{Mg}_{2}{ }^{-}$ $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right] \cdot 16 \mathrm{H}_{2} \mathrm{O}$ is the mineral hummerite (Weeks et al., 1951), which usually occurs together with pascoite, $\mathrm{Ca}_{3}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 17 \mathrm{H}_{2} \mathrm{O}$.

As part of our research on vanadates, molybdates and mixed molybdovanadates, the title compound, $\mathrm{Ca}_{2}\left(\mathrm{H}_{3} \mathrm{O}\right)_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 16 \mathrm{H}_{2} \mathrm{O}$, was prepared and studied. The centrosymmetrical decavanadate anion in this structure (Fig. 1) is built up of ten distorted VO_{6} edgesharing octahedra and is best described as a cubic closepacking of oxygen ions, with the octahedral holes filled by vanadium ions. Each VO_{6} octahedron is considerably distorted, with bond angles at the V atoms ranging from 74.25 (5) to $106.46(7)^{\circ}$. Accordingly, each vanadium ion is displaced from the centre of the polyhedron towards the exterior of the polyanion, causing variation of the $\mathrm{V}-\mathrm{O}$ distances in the wide range $1.60-$ $2.32 \AA$. The $\mathrm{V}-\mathrm{O}$ distance depends upon the type of oxo ligand: $\mathrm{V}=\mathrm{O}$, bond lengths to the terminal oxo O atoms vary from 1.6026 (17) to $1.6167(16) \AA, \mathrm{V}-$ $\mathrm{O}_{2 b}$ bond lengths to the O atoms bridging two V atoms vary from 1.6889 (15) to 2.0561 (16) $\AA, \mathrm{V}-\mathrm{O}_{3 \mathrm{~b}}$ bond lengths to the O atoms bridging three V atoms vary from 1.9128 (14) to 2.0127 (15) \AA and $\mathrm{V}-\mathrm{O}_{6 \mathrm{~b}}$ bond lengths to the O atoms shared between six V atoms range from 2.1100 (14) to 2.3219 (14) \AA.

Fig. 1. The structure of the $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ anion in $\mathrm{Ca}_{2}\left(\mathrm{H}_{3} \mathrm{O}\right)_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right]$ $16 \mathrm{H}_{2} \mathrm{O}$. Displacement ellipsoids are drawn at the 50% probability level.

The decavanadate anions are interconnected with calcium and hydronium cations and water molecules. The Ca^{2+} ions are surrounded by seven water molecules in a distorted pentagonal bipyramidal arrangement, with distances ranging from $2.329(2)$ to $2.475(2) \AA$. The hydronium ion is hydrogen bonded to three O atoms from three different decavanadate anions, with $\mathrm{O} \cdots \mathrm{O}$
distances ranging from 2.785 (2) to 2.932 (2) \AA. Water H atoms are also engaged in hydrogen bonding between decavanadate anions and water molecules, resulting in a rather complicated three-dimensional network.

Fig. 2. The crystal structure of $\mathrm{Ca}_{2}\left(\mathrm{H}_{3} \mathrm{O}\right)_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 16 \mathrm{H}_{2} \mathrm{O}$, showing the coordination polyhedra around the calcium ions. The hydronium ions have been omitted for clarity.

Fig. 3. The packing of polyoxovanadate anions, showing the hydrogen bonds between the hydronium and decavanadate ions.

Experimental

The title compound was prepared by mixing a hot water solution of MoO_{3} and $\mathrm{Ca}(\mathrm{OH})_{2}$ with a suspension of $\mathrm{NH}_{4} \mathrm{VO}_{3}$ in water, using hydrochloric acid to adjust the pH to 6. The resulting mixture was filtered and to the yellow solution
obtained, solid $\mathrm{CaCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ was added. After 4 d at room temperature, transparent orange crystals were isolated. The water content was determined by thermogravimetric analysis.

Crystal data

$\mathrm{Ca}_{2}\left(\mathrm{H}_{3} \mathrm{O}\right)_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 16 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1363.848$
Triclinic
$P \overline{1}$
$a=9.7172$ (6) \AA
$b=10.2638(5) \AA$
$c=10.5991$ (4) \AA
$\alpha=89.996(4)^{\circ}$
$\beta=102.938(4)^{\circ}$
$\gamma=110.121(4)^{\circ}$
$V=963.92(9) \AA^{3}$
$Z=1$
$D_{\mathrm{x}}=2.35 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 35 reflections
$\theta=11.4-18.0^{\circ}$
$\mu=2.708 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.38 \times 0.36 \times 0.35 \mathrm{~mm}$ Orange

Data collection

Philips PW1100 diffractome-
ter updated by Stoe
$\theta / 2 \theta$ scans
Absorption correction: none
5861 measured reflections
5585 independent reflections
4302 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=30.04^{\circ}$
$h=-13 \rightarrow 13$
$k=-14 \rightarrow 14$
$l=0 \rightarrow 14$
3 standard reflections
\quad frequency: 120 min
intensity decay: 2.3%

Refinement

Refinement on F^{2}
$R(F)=0.030$
$n \cdot R\left(F^{2}\right)=0.081$
$S=1.006$
5585 reflections
262 parameters
H atoms not refined
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.577 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.587 \mathrm{e} \AA^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0427 P)^{2}\right.$
$+0.3079 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 1. Selected bond lengths ((\AA)

$\mathrm{VI}-013$	1.6063 (16)	v3.-O5 ${ }^{1}$	1.8795 (16)
V1-05	1.8267 (15)	V.3-O9	2.0538 (15)
V1-06	1.8299 (16)	V3-O1	2.3182 (14)
V1-03	1.9971 (15)	V4-O12	1.6055 (16)
$\mathrm{VI}-\mathrm{O}^{1}$	2.0095 (15)	V4--04 ${ }^{1}$	1.8 .321 (16)
$\mathrm{V} 1-\mathrm{O} 1^{1}$	2.2587 (14)	V4-06	1.8593 (16)
$\mathrm{V} 2-\mathrm{O} 14$	1.6167 (16)	V4-O8'	1.9110 (15)
$\mathrm{V} 2-\mathrm{O} 8$	1.8179 (15)	V4-O10	2.0561 (16)
V2-07	$1.8209(15)$	V4-O1'	2.3219 (14)
V2--03	2.0127 (15)	V5-O10	1.6889 (15)
V2-()2	2.0119 (14)	V5-O9	1.6937 (15)
$\mathrm{V} 2-\mathrm{O} 1$	2.2242 (14)	V5-02	$1.9128(14)$
V3-O11	1.6026 (17)	V5-O3	1.9280 (14)
V3-04	1.8448 (16)	V5-OI'	2.1100(14)
V3-()7	1.86 .37 (16)	V5-OI	2.1326 (14)

Symmetry code: (i) $2-x,-y, 1-z$.
Table 2. Contact distances (\AA)

$2.3291(19)$	Ca...OW3	$2.4621(18)$
$2.357(2)$	Ca..OWI	$2.4762(18)$
$2.3774(19)$	Ca...OW6	$2.475(2)$
$2.4195(17)$		

Table 3. Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$

D-H. . A	D-H	H. . A	D. . A	D) $-\mathrm{H} \cdots$ A
$\mathrm{OH} 3 \mathrm{O}-\mathrm{HI} \cdots \mathrm{O}$	0.964	1.833	2.785 (3)	168.9
()H3O-H2 . $\mathrm{O} 12^{1}$	0.971	1.993	2.932 (3)	162.3
$\mathrm{OH} 3 \mathrm{O}-\mathrm{H} 3 \cdots \mathrm{C} 2^{\prime \prime}$	1.001	1.910	2.902 (2)	170.5
OW1--H11. . () $10^{\text {min }}$	0.869	2.011	2.875 (2)	172.7
OWI-H12..08 ${ }^{\text {O }}$	0.806	2.097	2.828 (2)	150.8
OW2-H21...)7	0.891	1.814	2.690 (2)	167.1
OW2-H22. . O8' ${ }^{\text {O }}$	0.940	1.970	2.885 (2)	163.9
OW3--H31...O4 ${ }^{\text {a }}$	0.897	2.026	2.917 (2)	172.1
OW3-H32..)(6^{11}	0.819	1.971	2.78 .5 (2)	171.9
OW4-H41...OII	0.886	1.945	2.815 (3)	167.0
OW4-H42..()14"	0.944	1.899	2.829 (2)	167.8
OW5-H51...OW2"'	0.964	1.966	2.892 (2)	160.3
OWS-H52 . O)3 ${ }^{\text {¹ }}$	0.818	1.835	2.6 .39 (2)	167.2
OW6-H61 . . O9	0.981	1.953	2.913 (2)	165.4
OW6-H62 . OW7	0.879	2.129	2.952 (3)	155.5
OW7-1171...OW8	0.838	1.909	2.715 (3)	161.1
OW7-H72..O13 ${ }^{\text {¹ }}$	0.917	1.998	2.889 (3)	163.4
OW8 - H81...O4	0.918	2.016	2.799 (3)	142.3
OW8-H82...OW5 ${ }^{\text {¹ }}$	0.958	1.944	2.868 (3)	161.4

Symmetry codes: (i) $1-x,-1-y, 1-z$; (ii) $x, y-1, z$ (iii$) 1-x,-y,-z$: (iv) $2-x,-y,-z$ (v) $2-x, 1-y,-z$ (vi) $x, 1+y, z ;$ (vii) $1+x, y, z$.

Water H atoms were found in a final difference Fourier map and included in the structure-factor calculations.
Data collection: STADI4 (Stoe \& Cie, 1996a). Cell refinement: STADI4. Data reduction: X-RED (Stoe \& Cie, 1996b). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b). Molecular graphics: EUCLID (Spek, 1982) and ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL97.

This work was supported by the Ministry of Science and Technology of the Republic of Croatia (project No. 119407).

[^0]
References

Avtamonova, N. V., Trunov, V. K. \& Makarevich, L. G. (1990). Izv. Akad. Nauk SSSR Neorg. Mater. 26, 350-356.
Durif, A., Averbuch-Pouchot, M. T. \& Guitel, J. C. (1980). Acta Crist. B36, 680-682.
Evans, H. T. Jr (1966). Inorg. Chem. 5, 967-977.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kamenar, B., Cindrić, M. \& Strukan, N. (1996). Acta Cņ̣st. C52, 1338-1341.
Nieto, J. M.. Salagre, P., Medina, F., Sueritas, J. E. \& Solans, X. (1993). Acta Crist. C49, 1879-1881.

Norblad. J. A. (1875). Bull. Soc. Chim. Fr. 24. 64-71.
Sheldrick, G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen. Germany.
Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Cristal Structures. University of Göttingen, Germany.
Spek, A. L. (1982). The EUCLID Package. Computational Crystallography, edited by D. Sayre, pp. 528. Oxford: Clarendon Press.
Stoe \& Cic (1996a). STADI4. Diffractometer Control Program. Stoc \& Cie, Darmstadt, Germany.
Stoe \& Cie $(1996 b)$. X-RED. Data Reduction Progran. Stoe \& Cie, Darmstadt, Germany.

Swallow, A. G., Ahmed, F. R. \& Barnes, W. H. (1966). Acta Cryst. 21, 397-405.
Weeks, A. D.. Cisney. E. A. \& Sherwood, A. M. (1951). Am. Mineral. 36. 326-327.

Acta Cryst. (1999). C55, 293-296

$\mathbf{A g}_{2}\left[\mathbf{P d}\left(\mathbf{N H}_{3}\right)_{2}\left(\mathbf{S O}_{3}\right)_{2}\right]$ powder

Leonid A. Solovyov, ${ }^{a}$ Alexander I. Blokhin, ${ }^{b}$
Ruslan F. Mulagaleev ${ }^{b}$ and Sergei D. Kirik ${ }^{a}$
${ }^{\text {a }}$ Institute of Chemistry \& Chemical Technology, 660049 Krasnoyarsk, Russia, and ${ }^{\text {b }}$ Academy of Non-ferrous Metals \& Gold, 660025 Krasnoarsk, Russia. E-mail: kirik@str.chem. krasnoyarsk.su

(Received 8 April 1998; accepted I October 1998)

Abstract

The water-insoluble title compound, disilver(I) diamminedisulfitopalladium(II), $\mathrm{Ag}_{2}\left[\mathrm{Pd}\left(\mathrm{SO}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$, was obtained from $\mathrm{Na}_{2}\left[\mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{SO}_{3}\right)_{2}\right]$ as a pale-green powder. $A b$ initio crystal structure determination was carried out using X-ray powder diffraction techniques. Patterson and Fourier syntheses were used for atom location, and Rietveld fitting was used for the final refinement. The structure consists of isolated flat trans$\left[\mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{SO}_{3}\right)_{2}\right]$ complexes, with SO_{3} and Pd bonded through S. The Ag^{+}cations are coordinated by distorted tetrahedra of O atoms from the SO_{3} groups. $\mathrm{Pd} \cdots \mathrm{Ag}$ contacts of $3.296(1) \AA$ supplement the coordination of the Pd to octahedral, according to the $(4+2)$ scheme. The substance is stable in air up to 448 K , after which it decomposes, yielding an $\mathrm{Ag}-\mathrm{Pd}$ alloy of a solid solution and metallic Ag and Pd .

Comment

Heteronuclear complex compounds with a low decomposition temperature are often regarded as potential precursors for obtaining metal alloys. As there was some interest in $\mathrm{Ag}-\mathrm{Pd}$ alloys, the available data on Ag Pd complex compounds were investigated. The literature search revealed rather limited information on these compounds. References to syntheses of $\mathrm{Ag}_{2}\left[\mathrm{Pd}\left(\mathrm{NO}_{2}\right)_{4}\right]$ (Chernyaev, 1964) and $\mathrm{Ag}_{2}\left[\operatorname{Pd}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]$ (Gmelin, 1942), and to crystal structure data on $\mathrm{Ag}_{2} \mathrm{PdCl}_{4}$ (Schroder \& Keller, 1988) were found.

The crystal structure of trans- $\mathrm{Ag}_{2}\left[\mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{SO}_{3}\right)_{2}\right]$, (I), is presented in Fig. 2. The structure can be defined as ionic, with separately located $\left[\operatorname{Pd}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{SO}_{3}\right)_{2}\right]^{2--}$ anions. Complex ions are arranged in layers parallel to the $a b$ plane, keeping an identical orientation. The

[^0]: Supplementary data for this paper are available from the $\overline{\mathrm{IUCr}}$ electronic archives (Reference: KA1295). Services for accessing these data are described at the back of the journal.

